Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Toxicol Appl Pharmacol ; 478: 116708, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778480

RESUMO

Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 µg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.


Assuntos
Pentaclorofenol , Animais , Pentaclorofenol/farmacologia , Pentaclorofenol/toxicidade , Peixe-Zebra/metabolismo , Citrulina/metabolismo , Citrulina/farmacologia , Larva , Arginina/metabolismo , Arginina/farmacologia , Ornitina/metabolismo , Ornitina/farmacologia , Prolina/metabolismo , Prolina/farmacologia
2.
Int J Biol Macromol ; 195: 1-11, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871655

RESUMO

Extracellular electron transfer material (EETM) has increasingly attracted attentions for the enhancing effect on multiple microbial reactions. Especially, EETM is known to be essential to activate the energy network in non-electroactive bacteria. It is motivated to find out an EETM which is natural-based, environmentally friendly, and easily produced at large-scale. In this study, Bombyx mori silk is found, for the first time, to function as an EETM by using an EETM-dependent pentachlorophenol (PCP) dechlorinating anaerobic microbial culture. Subsequently, by dividing fibroin fiber into different soluble/insoluble fractions and correlating their EET functions with their structural properties based on various spectroscopic analyses, the ß-sheet configuration is suggested as an essential structure supporting the EET function of silk materials. The analyses also suggested the involvement of sulfur-containing amino acids in this function. The EET function is not degraded by boiling or acid/alkaline treatments and the material can be utilized multiple times, although it is susceptible to UV irradiation. Bombyx mori silk also enhance other microbial reactions, including Fe(III)OOH reduction, CO2 reduction to acetate, and nitrogen fixation. This discovery provides a basis for developing biotechnology for environmental remediation, global warming reduction, and biofertilizer production using Bombyx mori silk and its wastes.


Assuntos
Bactérias/crescimento & desenvolvimento , Bombyx/química , Fibroínas/química , Pentaclorofenol/farmacologia , Sericinas/química , Anaerobiose , Animais , Bactérias/metabolismo , Dióxido de Carbono/química , Halogenação , Estrutura Molecular , Conformação Proteica em Folha beta , Indústria Têxtil
3.
PLoS One ; 16(2): e0247426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606832

RESUMO

Aquatic organisms have been used to investigate the safety of chemicals worldwide. One such assessment is an algal growth inhibition test. Algal growth inhibition tests are commonly performed using a growth chamber with fluorescent lamps as the lighting source, as test guidelines require continuous uniform fluorescent illumination. However, fluorescent lamps contain mercury, which has been identified as hazardous to humans and other organisms. The Minamata Convention (adopted in 2013) requires reduction or prohibition of products containing mercury. On the other hand, light-emitting diodes do not contain mercury and provide a photosynthetically effective wavelength range of 400-700 nm which is an adequate light intensity for algal growth. Light-emitting diodes are thus preferable to fluorescent lamps as a potential light source in algal growth inhibition tests. In this study, we investigated if light-emitting diodes could be substituted for fluorescent lamps in growth inhibition studies with green alga (Pseudokirchneriella subcapitata), diatom (Navicula pelliculosa), and cyanobacteria (Anabaena flos-aquae). Algal growth inhibition tests were performed using five different chemicals known to have different modes of action and are assigned as reference substances in the test guidelines. The results of each algal test showed similar values between light-emitting diodes and fluorescent lamps in terms of conditions for the growth inhibition rate and percent inhibition in yield of each chemical. It was therefore concluded that using light-emitting diodes instead of fluorescent lamps as a lighting source had no effect on the algal growth inhibition test results.


Assuntos
Clorófitas/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Luz/efeitos adversos , Cloreto de Cádmio/farmacologia , Clorofenóis/farmacologia , Fluorescência , Técnicas Microbiológicas , Pressão Osmótica/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Pentaclorofenol/farmacologia , Fotossíntese/efeitos dos fármacos , Dicromato de Potássio/farmacologia , Cloreto de Sódio/farmacologia
4.
PLoS One ; 15(7): e0233755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628677

RESUMO

Systems biology aims at holistically understanding the complexity of biological systems. In particular, nowadays with the broad availability of gene expression measurements, systems biology challenges the deciphering of the genetic cell machinery from them. In order to help researchers, reverse engineer the genetic cell machinery from these noisy datasets, interactive exploratory clustering methods, pipelines and gene clustering tools have to be specifically developed. Prior methods/tools for time series data, however, do not have the following four major ingredients in analytic and methodological view point: (i) principled time-series feature extraction methods, (ii) variety of manifold learning methods for capturing high-level view of the dataset, (iii) high-end automatic structure extraction, and (iv) friendliness to the biological user community. With a view to meet the requirements, we present AGCT (A Geometric Clustering Tool), a software package used to unravel the complex architecture of large-scale, non-necessarily synchronized time-series gene expression data. AGCT capture signals on exhaustive wavelet expansions of the data, which are then embedded on a low-dimensional non-linear map using manifold learning algorithms, where geometric proximity captures potential interactions. Post-processing techniques, including hard and soft information geometric clustering algorithms, facilitate the summarizing of the complete map as a smaller number of principal factors which can then be formally identified using embedded statistical inference techniques. Three-dimension interactive visualization and scenario recording over the processing helps to reproduce data analysis results without additional time. Analysis of the whole-cell Yeast Metabolic Cycle (YMC) moreover, Yeast Cell Cycle (YCC) datasets demonstrate AGCT's ability to accurately dissect all stages of metabolism and the cell cycle progression, independently of the time course and the number of patterns related to the signal. Analysis of Pentachlorophenol iduced dataset demonstrat how AGCT dissects data to identify two networks: Interferon signaling and NRF2-signaling networks.


Assuntos
Expressão Gênica , Software , Biologia de Sistemas/métodos , Análise de Ondaletas , Algoritmos , Animais , Ciclo Celular/genética , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cadeias de Markov , Camundongos , Pentaclorofenol/farmacologia , Pentaclorofenol/intoxicação , Distribuição Aleatória , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas/estatística & dados numéricos
5.
Chemosphere ; 259: 127493, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32622245

RESUMO

Pentachlorophenol (PCP), a highly toxic contaminant of chlorophenols, is common in a variety of environments and presents serious risks to animal and human health. However, the reproductive toxicity and potential actions of PCP have not been investigated thoroughly, especially in humans. Here, human spermatozoa were used to evaluate the effect of PCP on cell function and to explore the underlying mechanisms. PCP had no substantive effects on sperm viability or motility, nor on the ability to penetrate viscous medium, sperm hyperactivation or spontaneous acrosome reactions. However, PCP significantly inhibited these properties induced by progesterone (P4). Consistent with the functional observations, although PCP itself did not affect the basal intracellular Ca2+ concentrations and CatSper current, PCP dose-dependently inhibited increases of intracellular Ca2+ concentrations caused by P4. In addition, the activation of CatSper induced by P4 was largely suppressed by PCP. This is the first report showing that PCP may serves as an antagonist of the P4 membrane receptor to interfere with Ca2+ signaling by compromising the action of P4 on regulating sperm function. These findings suggest that the reproductive toxicity of PCP should also be a matter of concern as a mammalian health risk.


Assuntos
Pentaclorofenol/farmacologia , Progesterona/farmacologia , Espermatozoides/efeitos dos fármacos , Reação Acrossômica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Humanos , Masculino , Pentaclorofenol/metabolismo , Reprodução , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Viscosidade
6.
Chem Res Toxicol ; 32(6): 1281-1288, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31046239

RESUMO

Aloe-emodin (AE) is a major anthraquinone ingredient of numerous traditional Chinese medicines with a variety of beneficial biological activities in vitro. Previous studies suggested that AE possessed cytotoxicity and genotoxicity. Nevertheless, the mechanisms of the toxic action of AE have not yet been fully clarified. The present study aimed at characterization of metabolic pathways of AE to better understand the mechanisms of AE-induced cytotoxicity. An AE-derived glutathione conjugate (AE-GSH) was observed in rat liver cytosol incubations containing AE and GSH, along with 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Similar incubation fortified with N-acetylcysteine (NAC) in place of GSH offered an AE-NAC conjugate corresponding to the GSH conjugate. The formation of the two conjugates was found to require PAPS. The two conjugates were respectively detected in bile and urine of rats given AE. Sulfotransferase (SULT) inhibitor pentachlorophenol (PCP) suppressed the production of the observed AE-GSH/NAC conjugates in vivo, which suggested that SULTs participated in the process of the metabolic activation of AE. The presence of PCP attenuated cell susceptibility to AE-induced cytotoxicity. The present study illustrated potential association of sulfation-mediated bioactivation of AE with its cytotoxicity.


Assuntos
Antraquinonas/farmacologia , Sulfotransferases/metabolismo , Ativação Metabólica/efeitos dos fármacos , Animais , Antraquinonas/química , Antraquinonas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/química , Citosol/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Masculino , Estrutura Molecular , Pentaclorofenol/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfotransferases/antagonistas & inibidores
7.
FEBS Open Bio ; 9(7): 1194-1203, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033240

RESUMO

The expense and time required for in vivo reproductive and developmental toxicity studies have driven the development of in vitro alternatives. Here, we used a new in vitro split luciferase-based assay to screen a library of 177 toxicants for inhibitors of apoptosome formation. The apoptosome contains seven Apoptotic Protease-Activating Factor-1 (Apaf-1) molecules and induces cell death by activating caspase-9. Apaf-1-dependent caspase activation also plays an important role in CNS development and spermatogenesis. In the in vitro assay, Apaf-1 fused to an N-terminal fragment of luciferase binds to Apaf-1 fused to a C-terminal fragment of luciferase and reconstitutes luciferase activity. Our assay indicated that pentachlorophenol (PCP) inhibits apoptosome formation, and further investigation revealed that PCP binds to cytochrome c. PCP is a wood preservative that reduces male fertility by ill-defined mechanisms. Although the data show that PCP inhibited apoptosome formation, the concentration required suggests that other mechanisms may be more important for PCP's effects on spermatogenesis. Nonetheless, the data demonstrate the utility of the new assay in identifying apoptosome inhibitors, and we suggest that the assay may be useful in screening for reproductive and developmental toxicants.


Assuntos
Apoptossomas/efeitos dos fármacos , Pentaclorofenol/toxicidade , Testes de Toxicidade/métodos , Apoptose/efeitos dos fármacos , Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Morte Celular , Citocromos c/metabolismo , Células HEK293 , Humanos , Luciferases/metabolismo , Pentaclorofenol/farmacologia , Transdução de Sinais , Bibliotecas de Moléculas Pequenas
8.
J Appl Toxicol ; 39(4): 650-657, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30874336

RESUMO

Sulfotransferase 1A (SULT1A) expression is lower in the liver of humans than that of rodents. Therefore, species differences should be taken into consideration when assessing the risk of rodent hepatocarcinogens metabolically activated by SULT1A in humans. Although some renal carcinogens require SULT1A-mediated activation, it is unclear how SULT1A activity in the liver affects renal carcinogens. To explore the effects of SULT1A activity in the liver on genotoxicity induced by SULT1A-activated renal carcinogens, B6C3F1 mice or gpt delta mice of the same strain background were given lucidin-3-O-primeveroside (LuP), a hepatic and renal carcinogen of rodents, for 4 or 13 weeks, respectively, and pentachlorophenol (PCP) as a liver-specific SULT inhibitor, was given from 1 week before LuP treatment to the end of the experiment. A 4 week exposure of LuP induced lucidin-specific DNA adduct formation. The suppression of Sult1a expression was observed only in the liver but not in the kidneys of PCP-treated mice, but co-administration of PCP suppressed LuP-induced DNA adduct formation in both organs. Thirteen-week exposure of LuP increased mutation frequencies and cotreatment with PCP suppressed these increases in both organs. Given that intact levels of SULT activity in the liver were much higher than in the kidneys of rodents, SULT1A may predominantly activate LuP in the liver, consequently leading to genotoxicity not only in the liver but also in the kidney. Thus, species differences should be considered in human risk assessment of renal carcinogens activated by SULT1A as in the case of the corresponding liver carcinogens.


Assuntos
Antraquinonas/toxicidade , Dissacarídeos/toxicidade , Corantes de Alimentos/toxicidade , Rim/efeitos dos fármacos , Fígado/enzimologia , Sulfotransferases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Pentaclorofenol/farmacologia , Sulfotransferases/genética
9.
PLoS One ; 12(1): e0170092, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125623

RESUMO

As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2-4×104 cells/well (1-2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanotubos de Carbono/efeitos adversos , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Animais , Dano ao DNA/efeitos dos fármacos , Inflamação/induzido quimicamente , Oligoquetos/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Pentaclorofenol/efeitos adversos , Pentaclorofenol/farmacologia , Fagocitose/efeitos dos fármacos , Sódio/toxicidade
10.
Carcinogenesis ; 37(7): 647-655, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207664

RESUMO

Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.


Assuntos
Ácidos Aristolóquicos/metabolismo , Arilsulfotransferase/genética , Complexos Multienzimáticos/genética , Sulfato Adenililtransferase/genética , Arilsulfotransferase/antagonistas & inibidores , Arilsulfotransferase/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , DNA/genética , DNA/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Rim/metabolismo , Rim/patologia , Complexos Multienzimáticos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pentaclorofenol/farmacologia , RNA Interferente Pequeno , Sulfato Adenililtransferase/metabolismo , Xantina Desidrogenase/metabolismo
11.
FEMS Microbiol Lett ; 362(21)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26403431

RESUMO

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen with the ability to rapidly develop multidrug resistance under selective pressure. Previous work demonstrated that upon exposure to the environmental contaminant pentachlorophenol (PCP), P. aeruginosa PAO1 increases expression of multiple multidrug efflux pumps, including the MexAB-OprM pump. The current study describes increases in the antibiotic resistance of PAO1 upon exposure to PCP and other chlorinated organics, including triclosan. Only exposure to chlorinated phenols induced the mexAB-oprM-mediated antibiotic-resistant phenotype. Thus, chlorinated phenols have the potential to contribute to transient phenotypic increases of antibiotic resistance that are relevant when both compounds are present in the environment.


Assuntos
Farmacorresistência Bacteriana Múltipla , Genes MDR , Fenóis/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Anti-Infecciosos Locais/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Inibidores Enzimáticos/farmacologia , Halogenação , Testes de Sensibilidade Microbiana , Pentaclorofenol/farmacologia , Fenóis/química , Fenóis/metabolismo , Fenótipo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Triclosan/farmacologia
12.
Environ Mol Mutagen ; 56(4): 404-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25243916

RESUMO

1-Methylpyrene (1-MP) is a widespread pollutant that is carcinogenic in animals following metabolic activation. Previous studies have shown that benzylic hydroxylation of 1-MP, catalyzed by multiple CYP isoforms, gives rise to 1-hydroxymethylpyrene (1-HMP), which becomes bioreactive following further metabolism by various sulfotransferase (SULT) isoforms. However, the mutagenic and chromosome damaging effects of 1-MP and 1-HMP in mammalian cells have not been investigated. In this study a Chinese hamster V79-derived cell line expressing both human CYP2E1 and human SULT1A1 was used to investigate the ability of 1-MP and 1-HMP to induce cytotoxicity (using the CCK-8 assay), micronuclei and Hprt gene mutations. The role of each enzyme was investigated through co-exposure in the presence of an enzyme inhibitor. We found that at concentrations of 0.5-4 µM and 5-20 µM, under conditions where no reduction in cell viability/growth occurred, 1-HMP and 1-MP induced micronuclei in V79-hCYP2E1-hSULT1A1 cells in a concentration-dependent manner; however, both compounds were inactive in V79 cells. Similarly, they both caused an increase in Hprt mutant frequency in V79-hCYP2E1-hSULT1A1 cells in these concentration ranges, with 1-MP impairing cell viability/growth at 10 µM and above in the mutagenicity assay. The compounds were again both inactive in V79 cells. The effects of 1-HMP in V79-hCYP2E1-hSULT1A1 cells were blocked or reduced by addition of pentachlorophenol (PCP), a SULT1 inhibitor; the genotoxicity of 1-MP was significantly reduced by either 1-aminobenotrazole, a CYP2E1 inhibitor, or PCP. The results suggest that human CYP2E1 and SULT1A1 cooperate to activate 1-MP and cause genotoxicity in mammalian cells.


Assuntos
Arilsulfotransferase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Testes de Mutagenicidade/métodos , Pirenos/toxicidade , Animais , Arilsulfotransferase/antagonistas & inibidores , Arilsulfotransferase/genética , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Relação Dose-Resposta a Droga , Humanos , Hipoxantina Fosforribosiltransferase/genética , Testes para Micronúcleos , Mutagênicos/toxicidade , Taxa de Mutação , Pentaclorofenol/farmacologia
13.
Bull Exp Biol Med ; 157(3): 368-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25065317

RESUMO

The effects of ortho-aminoazotoluene on carcinogenic activity of diethylnitrosamine were studied in CBA and ICR mice. Injection of ortho-aminoazotoluene before and after diethylnitrosamine led to a significant reduction of its anticarcinogenic effect, judging from significantly lower level of liver tumors. Pentachlorophenol, inhibitor of sulfotransferase (catalyzing the terminal stage of ortho-aminoazotoluene metabolic activity), stimulated its carcinogenic effect on mouse liver. On the other hand, pentachlorophenol reduced the protective effect of ortho-aminoazotoluene on diethylnitrosamine-induced hepatocarcinogenesis in mice. Presumably, the carcinogenic and anticarcinogenic effects of ortho-aminoazotoluene were realized by its initial form or intermediate (non-sulfated) metabolites.


Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/metabolismo , o-Aminoazotolueno/farmacologia , Animais , Dietilnitrosamina , Feminino , Fígado/química , Fígado/enzimologia , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Masculino , Camundongos Endogâmicos CBA , Camundongos Endogâmicos ICR , Pentaclorofenol/farmacologia , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/metabolismo
14.
Bull Exp Biol Med ; 154(5): 664-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23658894

RESUMO

Pentachlorophenol (aromatic amine and azo stain metabolic stimulation inhibitor) reduced the hepatocarcinogenic activity of 4-aminoazobenzene and reduced that of ortho-aminoazotoluene in suckling mice. Both 4-aminoazobenzene and ortho-aminoazotoluene exhibited mutagenic activity in Ames' test in vitro on S. typhimurium TA 98 strain with activation with liver enzymes; this mutagenic activity was similarly suppressed by adding pentachlorophenol into activation medium. Induction of xenobiotic metabolism enzymes, stimulating the mutagenic activity of ortho-aminoazotoluene, suppressed its carcinogenic effect on mouse liver. Hence, ortho-aminotoluene (the initial compound), but not its mutagenic metabolites, was the direct active hepatocarcinogen for mice.


Assuntos
Carcinogênese , Carcinógenos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pentaclorofenol/farmacologia , o-Aminoazotolueno/metabolismo , Animais , Testes de Carcinogenicidade , Carcinógenos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos ICR , Testes de Mutagenicidade , Pentaclorofenol/química , Pentaclorofenol/metabolismo , o-Aminoazotolueno/química , o-Aminoazotolueno/toxicidade
15.
J Proteomics ; 78: 159-71, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23178873

RESUMO

Pentachlorophenol (PCP) represents a critical concern worldwide due to its toxicity and recalcitrance to degradation. The capacity of Mucor plumbeus to transform PCP into several detoxification metabolites, including tetrachlorohydroquinone and several phase II conjugates, was observed by LC-HRMS. The data obtained support the degradation pathway proposed previously. PCP effects in M. plumbeus, an unsequenced species, were investigated using a proteomics approach (bidimensional gel electrophoresis followed by MALDI TOF/TOF analyses). The mycelial proteins identified in the differentially accumulated spots allowed the identification of PCP responsive proteins. The presence of PCP increased the energy demand, altered the cell wall architecture and cytoskeleton and induced a significant stress response. The latter was emphasised by the up-accumulation of protein species associated with defence mechanisms (e.g. HSP70 and cytochrome c peroxidase). Overall the data produced corroborate the capability of PCP to uncouple oxidative-phosphorylation in mitochondria. Importantly, one of the identified mycelial protein species, a NAD- and Zn-dependent ADH, is likely to be involved in PCP degradation. Amongst the fungal secretome analysed, no putative PCP degradative enzymes were detected. This work constitutes the first toxicoproteomic study involving a Zygomycota fungus and the very first concerning the effect of PCP in a fungal proteome.


Assuntos
Poluentes Ambientais/farmacologia , Proteínas Fúngicas/metabolismo , Mucor/metabolismo , Pentaclorofenol/farmacologia , Proteômica , Biotransformação/efeitos dos fármacos , Biotransformação/fisiologia , Poluentes Ambientais/metabolismo , Pentaclorofenol/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
J Biomol Screen ; 17(7): 966-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22573731

RESUMO

The development of a macrophage-based, antitubercular high-throughput screening system could expedite discovery programs for identifying novel inhibitors. In this study, the kinetics of nitrate reduction (NR) by Mycobacterium tuberculosis during growth in Thp1 macrophages was found to be almost parallel to viable bacilli count. NR in the culture medium containing 50 mM of nitrate was found to be optimum on the fifth day after infection with M. tuberculosis. The signal-to-noise (S/N) ratio and Z-factor obtained from this macrophage-based assay were 5.4 and 0.965, respectively, which confirms the robustness of the assay protocol. The protocol was further validated by using standard antitubercular inhibitors such as rifampicin, isoniazid, streptomycin, ethambutol, and pyrazinamide, added at their IC(90) value, on the day of infection. These inhibitors were not able to kill the bacilli when added to the culture on the fifth day after infection. Interestingly, pentachlorophenol and rifampicin killed the bacilli immediately after addition on the fifth day of infection. Altogether, this assay protocol using M. tuberculosis-infected Thp-1 macrophages provides a novel, cost-efficient, robust, and easy-to-perform screening platform for the identification of both active and hypoxic stage-specific inhibitors against tuberculosis.


Assuntos
Antituberculosos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Nitrato Redutase/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Descoberta de Drogas , Etambutol/farmacologia , Humanos , Isoniazida/farmacologia , Leucemia Monocítica Aguda , Macrófagos/microbiologia , Pentaclorofenol/farmacologia , Pirazinamida/farmacologia , Rifampina/farmacologia , Estreptomicina/farmacologia
17.
PLoS One ; 7(2): e32684, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393435

RESUMO

Pentachlorophenol (PCP) induced expression of the NalC repressor-regulated PA3720-armR operon and the MexR repressor-controlled mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. PCP's induction of PA3720-armR resulted from its direct modulation of NalC, the repressor's binding to PA3720-armR promoter-containing DNA as seen in electromobility shift assays (EMSAs) being obviated in the presence of this agent. The NalC binding site was localized to an inverted repeat (IR) sequence upstream of PA3720-armR and overlapping a promoter region whose transcription start site was mapped. While modulation of MexR by the ArmR anti-repressor explains the upregulation of mexAB-oprM in nalC mutants hyperexpressing PA3720-armR, the induction of mexAB-oprM expression by PCP is not wholly explainable by PCP induction of PA3720-armR and subsequent ArmR modulation of MexR, inasmuch as armR deletion mutants still showed PCP-inducible mexAB-oprM expression. PCP failed, however, to induce mexAB-oprM in a mexR deletion strain, indicating that MexR was required for this, although PCP did not modulate MexR binding to mexAB-oprM promoter-containing DNA in vitro. One possibility is that MexR responds to PCP-generated in vivo effector molecules in controlling mexAB-oprM expression in response to PCP. PCP is an unlikely effector and substrate for NalC and MexAB-OprM--its impact on NalC binding to the PA3720-armR promoter DNA occurred only at high µM levels--suggesting that it mimics an intended phenolic effector/substrate(s). In this regard, plants are an abundant source of phenolic antimicrobial compounds and, so, MexAB-OprM may function to protect P. aeruginosa from plant antimicrobials that it encounters in nature.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Óperon , Pentaclorofenol/farmacologia , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Mapeamento Cromossômico , Modelos Genéticos , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/efeitos dos fármacos , Análise de Sequência de DNA
18.
Vopr Onkol ; 57(2): 216-20, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21809668

RESUMO

Pentachlorophenol, an inhibitor of metabolic activation of aminoazo dyes was administered to suckling mice prior to o-aminoazotoluene (OAT). It was followed by formation of numerous preneoplastic nodules and tumors in the lungs and liver. At the same time, 2,3,7,8-tetrachlorodibenzo-p-dioxine treatment decreased their number in the liver while slightly increasing them in the lung. A possible mechanism of aminoazo dye carcinogenicity is suggested.


Assuntos
Carcinógenos/toxicidade , Corantes/toxicidade , Fígado/patologia , Pulmão/patologia , Dibenzodioxinas Policloradas/farmacologia , Lesões Pré-Cancerosas/induzido quimicamente , o-Aminoazotolueno/toxicidade , Animais , Biotransformação/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Pentaclorofenol/farmacologia , Dibenzodioxinas Policloradas/toxicidade
19.
Plasmid ; 66(3): 152-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21839110

RESUMO

Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to 'graze' on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan "plaque" formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.


Assuntos
Antibacterianos/farmacologia , Cilióforos/efeitos dos fármacos , Escherichia coli K12/genética , Oxigenases de Função Mista/genética , Plasmídeos/genética , Animais , Cilióforos/fisiologia , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Escherichia coli K12/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Oxigenases de Função Mista/metabolismo , Oxirredução , Pentaclorofenol/metabolismo , Pentaclorofenol/farmacologia
20.
Mol Microbiol ; 79(6): 1547-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21231970

RESUMO

NalC is a TetR type regulator that represses the multidrug efflux pump MexAB-OprM in Pseudomonas aeruginosa. Here we explain the mechanism of NalC-mediated regulation of MexAB-OprM. We show that NalC non-covalently binds chlorinated phenols and chemicals containing chlorophenol side-chains such as triclosan. NalC-chlorinated phenol binding results in its dissociation from promoter DNA and upregulation of NalC's downstream targets, including the MexR antirepressor ArmR. ArmR upregulation and MexR-ArmR complex formation have previously been shown to upregulate MexAB-OprM. In vivo mexB and armR expression analyses were used to corroborate in vitro NalC-chlorinated phenol binding. We also show that the interaction between chlorinated phenols and NalC is reversible, such that removal of these chemicals restored NalC promoter DNA binding. Thus, the NalC-chlorinated phenol interaction is likely a pertinent physiological mechanism that P. aeruginosa uses to control expression of the MexAB-OprM efflux pump.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Pentaclorofenol/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/genética , Pentaclorofenol/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA